4 resultados para fungal diversity

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A rare monophialidic fungus, Taifanglania hechuanensis gen. & sp. nov., was isolated from soil oil the banks of Jialin River, Hechuan, Chongqing City during a survey of soil-borne filamentous fungi from different phytogeographical areas in China. It is described and illustrated in this paper. A further eight monophialidic species of Paecilomyces are transferred to the genus. Diagnosis features of the new genus are white, grey, straw yellow or brown to black colonies on Czapek agar. Conidiophores are always absent or simple. Phialides are solitary, consisting of a cylindrical or ellipsoidal swollen basal portion, tapering into a thin neck, directly arising on vegetative hyphae or prophialides, sometimes consisting of a whorl of 2 to 3 phialides oil simple conidiophores. Conidia arc one-celled, hyaline, smooth-walled, subglobose, ellipsoidal or fusiform, having or no the connective between conidia and being thermotolerant. The new species is characterized by pale yellow to grey-yellow colonies, solitary phialides with ail ellipsoidal or fusiform basal portion that arise directly from the vegetative hyphae, big conidia (3.1-)3.9-8.7 x ( 1.7-)2.1-4.7(-5.1) mu m with the connective, and thermotolerant growth. A molecular study based oil the nucleotidic sequences of the SSU rDNA and ITS regions support the status of T. hechuanensis as a new species and Taifanglania as a new genus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Climatic and land use changes have significant consequences for the distribution of tree species, both through natural dispersal processes and following management prescriptions. Responses to these changes will be expressed most strongly in seedlings near current species range boundaries. In northern temperate forest ecosystems, where changes are already being observed, ectomycorrhizal fungi contribute significantly to successful tree establishment. We hypothesised that communities of fungal symbionts might therefore play a role in facilitating, or limiting, host seedling range expansion. To test this hypothesis, ectomycorrhizal communities of interior Douglas-fir and interior lodgepole pine seedlings were analysed in a common greenhouse environment following growth in five soils collected along an ecosystem gradient. Currently, Douglas-fir’s natural distribution encompasses three of the five soils, whereas lodgepole pine’s extends much further north. Host filtering was evident amongst the 29 fungal species encountered: 7 were shared, 9 exclusive to Douglas-fir and 13 exclusive to lodgepole pine. Seedlings of both host species formed symbioses with each soil fungal community, thus Douglas-fir did so even where those soils came from outside its current distribution. However, these latter communities displayed significant taxonomic and functional differences to those found within the host distribution, indicative of habitat filtering. In contrast, lodgepole pine fungal communities displayed high functional similarity across the soil gradient. Taxonomic and/or functional shifts in Douglas-fir fungal communities may prove ecologically significant during the predicted northward migration of this species; especially in combination with changes in climate and management operations, such as seed transfer across geographical regions for forestry purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eudarluca caricis is a common hyperparasite of rusts. A total of 100 cultures were isolated from six Puccinia species or forms growing on 10 species of British grasses at two sites approximately 3 km apart. 82 isolates collected in 2005 were partially sequenced at the ITS locus, and amplified fragment length polymorphism profiles generated for 86 isolates from 2005 and 12 from 2007. Partial ITS sequences of most isolates grouped closely, in a clade with previously reported graminaceous Puccinia isolates and a number of Melampsora isolates. A second clade was very distinct and contained mostly isolates from P. poarum on Poa trivialis. All isolates had distinct AFLP haplotypes. The P. poarum isolates were very distinct from isolates collected from other rusts at the same site. Isolates from P. brachypodii f. sp. arrehenatheri growing on Arrhenatherum elatius in 2005 and 2007 at the same location were distinct (P < 0.001). Isolates from each rust or grass in one year and site were more similar than expected from overall variation between isolates (P<0.001). Isolates from P. coronata on different grasses clustered together (with isolates from P. brachypodii f. sp. poae-nemoralis), suggesting partial host rust specialisation in E. caricis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the Australian native perennial Fabaceae have been little explored with regard to their root biology and the role played by arbuscular mycorrhizal (AM) fungi in their establishment, nutrition and long-term health. The ultimate goal of our research is to determine the dependency of native perennial legumes on their co-evolved AM fungi and conversely, the impact of AM fungal species in agricultural fields on the productivity of sown native perennial legume pastures. In this paper we investigate the colonisation morphology in roots and the AMF, identified by spores extracted from rhizosphere soil, from three replicate plots of each of the native legumes, Cullen australasicum, C. tenax and Lotus australis and the exotic legumes L. pedunculatus and Medicago sativa. The plants were grown in an agricultural field. The level and density of colonisation by AM fungi, and the frequency of intraradical and extraradical hyphae, arbuscules, intraradical spores and hyphal coils all differed between host plants and did not consistently differ between native and exotic species. However, there were strong similarities between species in the same genus. The three dominant species of AM fungi in rhizosphere soil also differed with host plant, but one fungus (Glomus mosseae) was always the most dominant. Sub-dominant AM species were the same between species in the same genus. No consistent differences in dominant spores were observed between the exotic and native Fabaceae species. Our results suggest that plant host influences the mycorrhizal community in the rhizosphere soil and that structural and functional differences in the symbiosis may occur at the plant genus level, not the species level or due to provenance.